12 research outputs found

    A survey and classification of software-defined storage systems

    Get PDF
    The exponential growth of digital information is imposing increasing scale and efficiency demands on modern storage infrastructures. As infrastructure complexity increases, so does the difficulty in ensuring quality of service, maintainability, and resource fairness, raising unprecedented performance, scalability, and programmability challenges. Software-Defined Storage (SDS) addresses these challenges by cleanly disentangling control and data flows, easing management, and improving control functionality of conventional storage systems. Despite its momentum in the research community, many aspects of the paradigm are still unclear, undefined, and unexplored, leading to misunderstandings that hamper the research and development of novel SDS technologies. In this article, we present an in-depth study of SDS systems, providing a thorough description and categorization of each plane of functionality. Further, we propose a taxonomy and classification of existing SDS solutions according to different criteria. Finally, we provide key insights about the paradigm and discuss potential future research directions for the field.This work was financed by the Portuguese funding agency FCT-Fundacao para a Ciencia e a Tecnologia through national funds, the PhD grant SFRH/BD/146059/2019, the project ThreatAdapt (FCT-FNR/0002/2018), the LASIGE Research Unit (UIDB/00408/2020), and cofunded by the FEDER, where applicable

    Design, analysis and application of synthetic microbial consortia

    Get PDF
    The rapid development of synthetic biology has conferred almost perfect modification on single cells, and provided methodological support for synthesizing microbial consortia, which have a much wider application potential than synthetic single cells. Co-cultivating multiple cell populations with rational strategies based on interacting relationships within natural microbial consortia provides theoretical as well as experimental support for the successful obtaining of synthetic microbial consortia, promoting it into extensive research on both industrial applications in plenty of areas and also better understanding of natural microbial consortia. According to their composition complexity, synthetic microbial consortia are summarized in three aspects in this review and are discussed in principles of design and construction, insights and methods for analysis, and applications in energy, healthcare, etc

    GSK-3β and Vitamin D Receptor are Involved in β-Catenin and Snail Signaling in High Glucose-Induced Epithelial-Mesenchymal Transition of Mouse Podocytes

    No full text
    Background: Epithelial-mesenchymal transition (EMT) is recognized to play an important role in diabetic nephropathy (DN). Objective: To analyze the roles of glycogen synthase kinase 3β (GSK-3β), β-catenin and Snail signaling in high glucose (HG)-induced mouse podocytes EMT. Methods: Differentiated podocytes were divided into: the normal glucose group (NG: glucose 5.6mM), the HG groups (12.5HG: 12.5mM; 25HG: 25mM; and 50HG: 50mM of glucose), and the osmotic control group (NG+M: glucose 5.6mM and mannitol 44.4mM). GSK-3β, β-catenin and Snail were assessed using semi-quantitative RT-PCR, western blot and immunofluorescence. β-catenin and Snail pathways were assessed after down-regulating GSK-3β expression using an inhibitor (LiCl) or a small-interfering RNA (siRNA). Results: HG increased GSK-3β, β-catenin and Snail expressions, and promoted EMT, as shown by decreased nephrin expression (epithelial marker), and increased α-SMA expression (mesenchymal marker). GSK-3β inhibitor and GSK-3β siRNA decreased β-catenin and Snail expressions, and reversed HG-induced EMT. Immunofluorescence showed that GSK-3β and β-catenin did not completely overlap; β-catenin was transferred to the nucleus in the 25HG group. VDR seems to be involved in HG-induced β-catenin nuclear translocation. Conclusion: Down-regulating GSK-3β expression decreased β-catenin and Snail expression and reversed HG-induced podocytes EMT. Thus, modulating GSK-3β might be a target to slow or prevent DN
    corecore